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An Almost Linear-Time Algorithm
for Graph Realization

Robert E. Bixby and Donald K. Wagner

Abstract

Given a {0,1}-matrix M, the graph-realization problem for M is to find a tree such that the
columns of M are incidence vectors of paths in T, or to show that no such T exists. An algo-
rithm is presented for this problem the time complexity of which is very nearly linear in the

number of ones in M.






1. INTRODUCTION

The purpose of this paper is to describe an efficient algorithm for graph realization.! Our
motivation is the applicability of such an algorithm to finding network structure in linear pro-

grams (see [2,11]). Graph realization also provides a generalization of planarity testing.

Fujishige (7] has independently? given an algorithm with essentially the same time bound as
that given here. However, many of the details in [7] are left to the reader making it difficult to
understand and verify the algorithm. The algorithm in [7] and the one given here are similar in
that they both are based on an exponential-time procedure proposed in [13]. Fujishige makes this
procedure polynomial by employing the PQ-tree data structure of [4]. The algorithm given here

does not use any such special data structure, using instead a graph-decomposition.

There are several equivalent definitions of the graph-realization problem. The simplest is:
Given a {0,1}-matrix M, determine if a tree T exists such that the columns of M are incidence
vectors of paths of T, and if so find such a tree. (Note: It is not necessary that all paths of T
occur as columns in M, only that all columns of M occur as paths in T.) If T exists, M is called
graphic.

The first polynomial-time algorithm for graph realization was given by Tutte [19]. Other
polynomial algorithms are given in (2,5,7,9,11,14,16,18,20]. Our algorithm and the algorithm in [7]
have the property that for an M that is not ‘“‘entirely graphic,”” a maximal subset of “graphic

columns’’ is produced. This property is important in the application to linear programming.

The remainder of the paper is arranged as follows. Section 2 supplies several definitions. In
section 3, Lofgren’s procedure is given along with an informal discussion of how to make it poly-
nomial. In sections 4 and 5 the main subroutines are developed in detail -- TYPING, HYPO-
PATH and UPDATE. In section 6 the main algorithm GRAPH is stated. Section 7 contains the

derivation of the complexity of the algorithm. Finally, an example is given in the Appendix.

IThe paper is based on the Ph.D. dissertation [22] of the second author. An outline of the main algorithm has also
recently been given in [1].

ZPreliminary results of the current paper were presented at the April 30-May 2, 1979 TIMS/ORSA national meet-
ing.



2. DEFINITIONS
We assume a basic knowledge of graph theory. See [3] for an introduction.

Let G =(N, E) be a graph with node-set N and edge-set E. An edge with identical ends is
a loop, and two non-loop edges with the same ends are parallel. Let A be a set with A C E. The'
edge-induced subgraph G[A] is the subgraph with edge-set A and node-set consisting of those
nodes meeting A. G\A is the spanning subgraph obtained by deleting the edges of A. A path is
a “simple path” (one without repeated nodes), and a cycle is a “simple closed path.” We identify
paths and cycles with their underlying edge-sets. A polygon is a connected graph the edge-set of

which is a cycle with at least three edges. A connected, loopless graph on two nodes is a bond.

Let T=(N,A) be a directed graph (digraph) with arc-set A =A(T). T is an arborescence
if its underlying graph is a tree, every node except one has indegree one, and the one special node,
denoted ro0t(T), has indegree zero. Let v and v be the tail and head, respectively, of some arc
of T. Then u is the parent of v and v a child of u. Note that every node u, except root(T),

has a unique parent, denoted here by p(u).

Let G =(N, E) be a connected graph with spanning tree T. Then for each edge e €E-T
the graph G[T | J {e¢}] contains a unique cycle, denoted C(T',¢), the fundamental cycle of T
determined by e. Define a {0,1}-matrix M as follows. Index the columns of M on E-T, the
rows of M on T and define m;x, the (5, k)-entry of M, by

1if jeC(T,k)
m,kz

0 otherwise .
M is a fundamental matriz of G with respect to T.
Given a {0,1}-matrix M, the graph-realization problem is to determine a connected graph
@, if one exists, such that M is a fundamental matrix for G. M is then said to be graphic and G
is a realization of M. This definition is equivalent to the one in the Introduction. For any
{0, 1}-matrix M, graphic or not, the set of row indices corresponding to nonzeros in column k
together with the column index k will be denoted by Cj and be referred to as a “fundamental

cycle” of M.



Let G =(N,E) be a connected graph, and let {E;,E,} be a partition of E. Then, for
k >0, {E{, E,} is a k-separation of G if
|Ei| 2 k < |Eq]
IN(GIE)]) MIN(GEY])| =k
For n a positive integer, G is n-connected if it has no k-separation for k¥ < n. Graphs having a

1-separation are separable; 2-connected graphs are nonseparable.

Let {E;,E;} be a 2-separation of a nonseparable graph G. Let
N(G[E))( N(G[Ey))={u,v}. Define G’ to be the graph obtained by interchanging in G [E]
the incidences of the nodes u and v. Then G~ is said to be obtained from G by reversing
G[E,]. In general, G”* is 2-isomorphic to G if G** is obtainable from G by a sequence of sub-

graph reversals.

A parallel class of a graph G is a maximal set of edges B such that G{B] is a bond. “The”
simplification of G is the graph obtained by deleting all loops and all but one edge in each paral-

lel class. If G is not a polygon or bond and its simplification is 3-connected, then it is prime.

The following important theorem is due to Whitney [24].

(2.1) Theorem. Let G and G’ be nonseparable graphs on the same edge-set. Then G and G’

are 2-isomorphic if and only if they have the same cycles.

For a short proof of Theorem 2.1, see [17] or [23].

3. AN OUTLINE OF THE ALGORITHM

Let M be an rXc¢ {0,1}-matrix. Assume M has no row or column consisting of zeros only,
and let R and C be its sets of row and column indices, respectively. Define a graph H with
node-set R |_J C and an edge for each nonzero of M. The submatrices corresponding to the con-
nected components of H are called the blocks of M, and M is said to be nonseparable if it has just

one block. The following result is well known.



(3.1) Theorem. M is graphic if and only if each block of M is graphic; moreover, if M is non-

separable and graphic with realization G, then G is nonseparable.

Linear-time algorithms to find the blocks of M, linear in the number of nonzeros, are easy

to describe (e.g., see [2]).

Let M; denote the matrix made up of the first k¥ columns of M, where rows consisting
entirely of zeros have been deleted. M is called totally nonseparable if M, is nonseparable for
1<k < c¢. For any nonseparable matrix it is easy to compute a permutation of the columns such
that the resulting matrix is totally nonseparable. For example, virtually any algorithm for com-

puting the components of H, above, will so order the columns.

In view of the above remarks we assume henceforth that M is totally nonseparable. We
also assume, for purely technical reasons, that the first column of M is a singleton (see the first
paragraph of section 4).

Where C, is the fundamental cycle of column k of M, define P, = C, N { U O'J-}. A set of

i<k
edges P of a graph G is a hypopath of G if P is a path in some graph 2-isomorphic to G. The
following statement, provable directly from Theorem 2.1, is Lofgren’s “subrearrangement

theorem” [13].

(3.2) Theorem. Let M be a totally nonseparable {0,1}-matrix with ¢ columns. Assume for
some 1 < k < ¢ that M, is graphic with realization G;. Then M,,, is graphic if and only if Py

is a hypopath of G;.

Based on Theorem 3.2, Lofgren suggested the following procedure for testing whether M is
graphic. Clearly M, is graphic. Suppose there exists a graph G, that realizes M. Further, sup-
pose Py, is a hypopath of G. Then there exists a graph G}’ 2-isomorphic to Gy such that P, ,
is a path in Gy". Add the edges of Cy1—Pi,; to G} so that they form a path between the ends

of Pi,y but are not incident to any other nodes of G;”. It is straightforward to verify that the



resulting graph G, is a realization of M;,. If the above procedure breaks down at any point, it

follows that M is not graphic.

To implement Lofgren’s idea requires a polynomial-time method for constructing G, from
Gi. A natural approach is to invoke some representation of G} that “displays’ all graphs 2-
isomorphic to G,. For this representation we use a graph decomposition, called here t-
decomposition. This notion of decomposition is a small variation on a theory developed by Tutte

[21, Chapter 11]. The data structures needed to represent a t-decomposition are elementary.

The remainder of the section is devoted to describing an example decomposition and illus-

trating pictorially how it can be used to implement the above procedure.

A careful definition of t-decomposition will be given in the next section. For now we define
a t-decomposition as an arborescence whose nodes are graphs. Two nodes, that is graphs, are
adjacent if they have an edge in common, called a “marker” edge. It is assumed that each graph
is a bond, polygon or prime. An example t-decomposition is shown in Figure la. The arrows
between graphs indicate the pairings of the marker edges. The root is G;. The marker edges

themselves are indicated by oriented dashed lines.

Wtz

A
AN T~
4'._.___; Gg ]

Gg €7

Figure 1a: A t-decomposition



We associate with each t-decomposition a “merged’’ graph obtained by identifying the com-
mon marker edges and then erasing them. The merged graph for the graph in Figure 1a graph is
shown in Figure 1b. The orientations on the marker edges specify the orientations in which they

are identified.

Figure 1b: The merged graph for Figure 1a

Let G be the graph in Figure 1b and let P={a,b,c,d,¢,f,g}. P plays the role of Py, in

the Lofgren procedure. Each edge of P lies in one of the graphs of the t-decomposition D in Fig-

ure la. Consider the t-decomposition D’ in Figure 2a.

Figure 2a: Altered t-decomposition



D’ is obtained from D by “reorienting” G, with respect to G, (that is, by reorientation of
its marker edge), “relinking”” the polygon Gj (that is, by reordering its edges) and reorienting G
with respect to Gg. The result is that the merged graph G of D’ is as given in Figure 2b and
has the property that P is a path. Thus, P is a hypopath of G. An algorithm HYPOPATH for
carrying out the above kinds of operations -- marker reorientations and polygon relinkings -- is

the subject of section 4.

Figure 2b: The merged graph for Figure 2a

The final step in an efficient implementation using t-decompositions is to give an update
procedure. (A polynomial-time but inefficient alternative would be to recompute the decomposi-
tion from scratch [10].) Thus, suppose h is an edge not in G, and that h is added to G* forming
a cycle with P. We must construct the t-decomposition for the new graph. It is given in Figure
2¢. It was obtained by merging G,, G4, G3, G5, Gg, Gg and Gy, in the process of which the
piece Gy’ was ““squeezed” off. Section 5 describes the general procedure for this update, the algo-

rithm UPDATE.

N
d ~~
[ =~ -
Gy £ e \/
4 G7 7
< X"
N v
\ ,I \ / a
4 / G5"

Figure 2¢: Updated t-decomposition



4. THE HYPOPATH PROBLEM

We begin by describing a graph decomposition. Let D be a finite collection of nonseparable
graphs, and let T be a digraph having node-set D and two nodes joined by an arc if these nodes
have some common edge. The collection D is a decomposition if T is an arborescence and any
two members of D have at most one edge and no nodes in common. If H,K €D and
{e}=E(H)( E(K), then e is a marker edge of H and K. If K =p(H) (recall p(-) denotes
“parent of”), then e is a child marker of K and the parent marker of H, in this latter capacity
denoted pm(H). We assume that root(D)=root(T) is chosen to have at least one edge not in
any other node. Picking one such edge arbitrarily, say m, we define pm(root(D))=m. In our
algorithm we always chose as m the edge corresponding to the first, by assumption singleton,
column of M. This choice guarantees that m is never in “P’’ (see the definition of the hypopath
problem) and that root(D) is always a bond given that D is a “¢-decomposition,” and thus

simplifies the statement of (R5) in section 5.

Let ¢ = pm(H) have ends u; and us in H; and v, and vy in K = p(H) (so, H 5% root(D)).
An orientation of H with respect to K is a bijection f:{uy, ug} — {v;,v}. Given f, H is said to
be oriented with respect to K. To reorient H is to change f. The decomposition D is oriented if
every child member is oriented with respect to its parent. The collection of these orientations is

referred to as the orientation of D.

An oriented decomposition D is a t-decomposition if (i) every member of D has at least
three edges and is a polygon, bond or prime; (ii) only bond members of D have edges parallel to

their parent marker; and (iii) no two polygons or bonds have a marker edge in common.

To relink a polygon member of D is to reorder its edges, thus producing a 2-isomorphic

copy.

Corresponding to the above decomposition there is a composition. Let D be an oriented
decomposition with H, K € D, K =p(H), and ¢ = pm(H). Let ¢ have ends u; and uy in H. To
merge H with K is to delete e from both graphs and identify »; with f(u;) (¢ =1,2), where [ is

the orientation of H with respect to K. The resulting graph is denoted m;(H,K), or simply
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m(H,K). Note that m(H,K) is uniquely determined up to the names of the nodes being

identified.

Replacing, in D, the graphs H and K with m(H, K) yields a new decomposition D’ having
one fewer member, where the orientation of D induces an orientation of D’. Repeating this pro-
cess an additional |D | -2 times yields a single graph denoted m (D). It is straightforward to ver-

ify that m(D) does not depend on the order in which the members of D are merged. The graph

m (D) is the merged graph of D.

Let D={Q,H,,....H;} be an oriented decomposition with @ =p(H;) (1 <7 <t). Let

f1,..., f¢ be the orientations of Hj,..., H; respectively. Then Q; [Hj,..., H;] denotes m(D), where f

refers to fq,...,f;.

(4.1) Theorem. Let G and G’ be 2-isomorphic nonseparable graphs and let G = @, [H;,...,H;].
Assume that @ has at least 3 edges, is a polygon, bond, or prime, and that if @ is a polygon,
then for each H;, H;\{pm(H;)} is nonseparable. Then there exist graphs @’ ,H,,...,.H;" and an
orientation f’ such that @ is 2-isomorphic to @’, H; is 2-isomorphic to H; (1 <17 <t) and

G’ =Q’,[H{,...,H]. Further, if Q is not a polygon, then Q" = Q.

Proof. This may be deduced from Theorem 2.1 and results in [6]. In particular, we may replace
@ and each of the H; (1 <¢ <t) by its “standard” decomposition in the sense of [6]. Now, the
condition that when @ is a polygon, each H;\{pm(H;)} is nonseparable, implies that these
decompositions taken together form a ‘“‘standard” decomposition D of G except for some possible
adjacent bonds. But it is easy to see that merging these bonds does not affect the class of graphs
obtainable as the merged graph by first reorienting D and then merging. On the other hand,
because G and G’ have the same cycles, it follows from the uniqueness result Theorem 18 of [6]
that merging the adjacent bonds in D does yield a ‘“‘standard” decomposition of G’. The
theorem now follows by applying Theorem 2.1 and using the easy fact that any 2-isomorphism of
a graph can be carried out as a 2-isomorphism on the simplification followed by the reinclusion of

the deleted edges.
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Let P C E(m(D)). We consider the following hypopath problem: Given a t-decomposition D
and a set P C E(m(D)), find a t-decomposition D’, if one exists, such that m(D”) is 2-isomorphic
to m(D) and P is a path of m(D").

Define 15, the reduced t-decomposition of D with respect to P, to be the minimal decompo-
sition contained in D and containing all members of D that have an edge of P. Clearly, P is a
hypopath of m(D) if and only if P is a hypopath of m(D). Note that the arborescence structure

of the original t-decomposition D induces an arborescence structure on ﬁ, but it need not be the

case that root(D)=root(D).

The following classification scheme is crucial to our method. Let H be a graph, m a dis-
tinguished edge (m is typically a parent marker) and ¢ £ X C E(H)-{m}. Consider the following

mutually exclusive arrangements for (H,X,m):
(1) XU {m}isa cycle;
(2) X is a path with m incident to one end-node and one internal node;
(3) X|J{m} is a path with m an end-edge;
(4) X|J{m} is a path with m not an end-edge.

If (H,X,m) satisfies (i), set A(H,X,m)=/1; otherwise set A(H,X,m)="5. Define the type of
(HX,m) by T(HX,m)=min{A(H ,X,m):H’ is 2-isomorphic to H}. (H,X,m) is good if

A(H,X,m)=T(H,X,m)<5.

(4.2) Lemma. If T(H,X,m)=1, then A(H,X,m)>1. If T(H,X,m)=1, then A(H,X,m)=1. If

T(H,X,m)=2, then A(H,X,m)= 2or 5.

Proof. The result follows easily from the definition and the easy part of Theorem 2.1.

For the remainder of this section the following notation is used. D is the reduced ¢-
decomposition of D with respect to P, and Q €D is fixed. Each child of Q is the root of a
unique maximal ¢-decomposition contained in D. Let S1,...,5¢ be these t-decompositions and let

Hy;=m(S;) (1<¢<t). Hy,...,H, are the complete children of Q. Let m =pm(Q) and define
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H=Q[H,,...,H;] where f is the orientation induced by D. Define m;=pm(H;) (1<i<t),
X=P(E(H) and Wo=(PME(Q)UJ{m,...,m;}. Note that if Q is a polygon, then H;\{m;}
(1 <7< t) is nonseparable because root(S;) cannot be a polygon. Hence, Theorem 4.1 applies.
Suppose F' is a t-decomposition contained in D with K =m(F) and P[E(K)5#¢. In
what follows T(K) := T(K, P()E(K), pm(root(F))), A(K) := A(K, P E(K), pm(root(F)))

and K good means T(K)=A(K) <5.

The following three lemmas provide some basic results. The proofs are straightforward and

are left to the reader. An end-node of H[X] is a node incident to exactly one edge of X.

(4.3) Lemma. Suppose X is a disjoint union of paths of H.

(a) If T(H;)>1 (respectively, > 3) (some ¢), then H; contains an end-node (respectively,

two end-nodes) of H[X] not incident to m, and T(H) > 1 (respectively, > 3).

(b)  If H[{X] has an end-node (respectively, two end-nodes) in H; (some ¢) and not incident

to m;, then T(H;) > 1 (respectively, > 3).

By Lemma 4.3, T(H) <4 implies at most two of the (H;,X;,m;) are not type 1. Further, if

for some ¢, T(H;)=4, then T(H;)=1 for jF#1.
(4.4) Lemma. If A(H)<4, then A(H;)<4 (1<1:<t). Moreover, if T(H;)=>5 for some 17, then

P is not a hypopath of m(D).

(4.5) Lemma. Let H be a 2-isomorphic copy of H; for some ¢. Assume A(H;)=A(H;). Then

there is an orientation of H; such that replacing H; by H; leaves A(H) unchanged.

Theorems 4.6 and 4.8 are the heart of the algorithm for solving the hypopath problem.

(4.6) Theorem. Suppose that @ is not a polygon. If each H; is good, then either there exists an

orientation f” such that Q- [Hj,..., H;] is good, or T(H)=5.
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Proof. Assume 7T(H)<4. Then by Theorem 4.1, since @ is not a polygon, there are 2-
isomorphic copies Hy,...,H, of Hj,...,H,, respectively, and an f" such that A(H" )= T(H)<4,
where H = Q-[H,..., H]. By Lemma 4.4, A(H/)<4(1<i{<t), and by Lemma 4.5 we may
assume not all H; are good. Suppose H; is not good. Then by Lemma 4.2, T(H;)=3 and
A(H()=4, and so by Lemma 4.3, T(H;)=1 (¢ >1). Now, it is obvious that A(H")>4, and

that replacing Hy" by Hj, in either orientation, does not decrease A(H").

(4.7) Computational Remark. f’ is straightforward to compute. This remark applies as well to
Theorems 4.8-4.10. In particular, by Lemma 4.3, either exactly one H; is of type 4, and all others
are of type 1, or at most two have type 2 or 3 and all others are type 1. In the first case no
reorientation is needed. In the second case there are only two possible orientations for the non-
type 1 H;, and in determining which of these are good only the degrees of the ends of pm(H;) in

H;[P(\E(H;)] are needed. f’ can thus be found in time linear in | Wy |.

A similar theorem holds when @ is a polygon, but because polygons may have nontrivial 2-
isomorphisms a slight modification is needed. Let b be the number of non-type 1 complete chil-
dren of H. By Lemma 4.3 it may be assumed that b <2. Let ZC Wy be the set of child mark-
ers of H that correspond to the non-type 1 complete children. Assume that either
Z=¢, Z7={m;} or Z={m,my}. The appropriate relinking procedure is:

Procedure RELINK1(Q)

@ must be a polygon, and Z must satisfy |Z| <2. Relink @ so that Wy —Z is a path, one
end of Wy—Z is incident to m, the other end is incident to m,; (if it exists), and my (if it
exists) is incident to m.

®

(4.8) Theorem. Suppose RELINK1{Q) has been applied. If each H; is good, then either there

exists an orientation f” such that @, [H,,..., H;] is good or T(H)=>5.

Proof. There are essentially four cases. If Z=¢, the result is clear.
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If Z={m,} and | Wy | < |E(Q)|-1, then T(H)>3. If A(H;) = 2 or 3, then it is easily
seen that there exists an f” such that A(Q,-[H),..., H,])=3. If A(H,)=4, then Theorem 4.1
implies T(H)=5 since T(H)>4 by Lemma 4.3 and Wy does not have enough edges for

H[X|J{m}] to be connected.

If Z={m,} and | Wg|=|E(Q)| -1, then T(H)>2. If A(H,) = 2, 3 or 4, then clearly
[’ exists such that A(Q, [H,,...,H,))=A(H,), and so if A(H;)=2 we are done. In the case
A(H,) = 3, the easy part of Theorem 2.1 implies T(H) > A(H,) since X | J{m} does not contain

a cycle, and when A(H;)=4, Lemma 4.3 implies T(H) > A(H,).

If Z={my,my} and |Wy| < |E(Q)|-1, then T(H)>4. On the other hand, by Lemma

4.3, T(H)< 4 only if T(H;)<3 (1=1,2). In this case T(H)=4 is clearly achievable.

Suppose Z={m,m,} and | Wy | = |E(Q)|-1. Then T(H)>4.If T(H,)= T(H,)=2, then
T(H)="5 since X| J {m} contains a cycle. If T(H;)>4 (i=1,2), then T(H)=>5 by Lemma 4.3.

In all other cases it is easy to see T(H)==4 is achievable.

Algorithm TYPING

Input: The reduced t-decomposition D corresponding to a t-decomposition D and a nonempty set
P C E(m(D)); the depth partition m=(m,...,m,) of D, where G €m; (0 <j < s)if the unique path
from G to root(D) has j arcs. We assume s > 1.

Output: The conclusion that P is not a hypopath of m(D), or a reoriented 15, and hence a

A

reoriented D, such that each complete child H; of root(D) is good and T(H;) is known.

Comment. Steps T1 and T3 are modified in section 5 under “Rules for selecting K,,K,.”

Step T1. For each polygon H E€m, apply RELINK1(H). If T(H)=>5 for some H € m,, stop —
Lemma 4.4 implies P is not a hypopath of m({D). (Note that each HEm, is a polygon,
bond, or prime, and so the computation of T(H) is easy. The data structures required to do
this computation in time linear in P [} E(H) are discussed in section 6.) Set ¢ < s—1.

Step T2. If i =0, stop -- the desired D has been found.

Step T8. Let Qe€m;, let Hy,..,H, be the complete children of @ in D, and let
H=Q;[H,,...,H,] where f is the current orientation of D. If more than two of the H; are
not type 1, stop -- Lemma 4.3 implies P is not a hypopath of m(D). If Q is a polysgon,
apply RELINK1(Q). Find, if possible, an orientation f* and a corresponding new D such

that Q- [Hy,..., H;] is good -- see (4.7). If T(H)=35, stop.

Repeat the above procedure until a stop occurs, or every Q €m; has been treated.
When the latter occurs, set i«<—7-1 and go to Step T2.
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The considerations required are slightly differenﬂ when @ =root(ﬁ) (although the proofs
are essentially the same). Typing is no longer important; we wish rather to determine whether or

not P can be made into a path. For example, in this case T(H)=~5 is preferred to T(H)=4.

(4.9) Theorem. Suppose @ —root(D) and Q is not a polygon. If each H; is good, either there
exists an orientation mapping f such that P is a path of Q;-[Hj,...,H;], or P is not a hypopath

of H.

For polygons the following relinking procedure is needed.

Procedure RELINK2(Q)

Q must be a polygon. Relink @ so that Wy —Z is a path and, if m; exists (1= 1,2), so that
m; is incident to an end of the path Wy 7.
[ ]

(4.10) Theorem. Suppose Q —root(D) and that RELINK2(Q) has been applied. If each H; is
good, then either there exists an orientation f” such that P is a path of Q-[H;,...,H], or P is

not a hypopath of H.

Algorithm HYPOPATH
Input: A t-decomposition D and a set P C E(m(D)).

Output: A {new) t-decomposition D such that P is a path of m(D) and m(D) is 2-isomorphic to
the input m(D), or the conclusion that no such 2-isomorphism exists, i.e., that P is not a hypo-
path of D.

Step H1. Compute the reduced t-decomposition D for P. If D has just one member, let
this member be @ and go to Step H3.

Step H2. Apply TYPING. If this results in the conclusion that P is not a hypopath, stop;
otherwise, set @ « root(D).

Comment. Step H3 is expanded in section 5 under ‘“Rules for selecting K{,K,.”

Step H3. Let Hy,..., H; be the complete children of @ in D. If more than two H; are not of
type 1, stop -- P is not a hypopath. Apply RELINK2(Q) if @ is a polygon. Find, if possi-
ble, an orientation f° and corresponding D such that P is a path of @, [Hi,...,H;] - see
(4.7).
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5. DECOMPOSITION UPDATE

Assume the following are given: A ¢-decomposition D, a path P of m(D), and the reduced
t-decomposition D of D with respect to P. Let C be a set such that C[)E(m(D))=P with
C-P3£¢. The purpose of this section is to give a method to determine a ¢-decomposition D* for
the graph obtained from m(D) by adding the edges of C~P so that C is a cycle, and C-P is

incident to m(D) at exactly two nodes. (In terms of the notation in section 3, P=F,,,, D=D;,

C= Ok+1 and D,:Dk+l')

The idea for finding D" is intuitively simple. First we select appropriate graphs K, K,€D
containing the ends of P. If it happens that K;=K,, then the construction of D" changes D
very little. When K54 K,, more complicated modifications are involved. Where R is the unique
path in D between K, and K, we first “squeeze’ off certain parts of any polygons that occur in

R. Then the remaining graphs are merged and C'— P appropriately added.

We introduce a convention. For a given node z of m(D), there may be several nodes of
members of D that are merged into 2. In the remainder of this section we identify all these nodes

with the name =z.

Using the following rules, the graphs K, K, are conveniently found while executing TYP-

ING and HYPOPATH.

RULES FOR SELECTING K,,K,

Comment. The end-nodes of P contained in K, K, are computed while applying rules
(R1)-(R4). They will be encountered naturally during the calculations in Steps T1, T3 and
H3.

Additions to Steps T1 & T8 in TYPING:

(R1) If T(H;)=1 (all ¢) and T(H)=2 or 3, either set K, @ if K; is not yet assigned, or
set Ko Q.

(R2) If T(H;)=1 (all {) and T(H)=4, set K;, Ky Q.

(R3) Suppose T(Hy)=2 or 3 for some k, T(H;)=1 (all i5£k) and T(H)=4. Let K, be
the node on the unique path in D between @ and K; that is nearest K and contains
the same end of P as @.
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Additions to Step HS of HYPOPATH:

(R4) If K; has not been assigned, set K;, Ky« Q. Otherwise, let K, be the node on the
unique path in D between @ and K, that is nearest K, and contains the same end of
Pas Q.

(R5) Suppose K;,K, have been selected and K;—=K,. If the ends of P are the ends of
pm(K,) and K, is not a bond, set K;,K,+ p(K,). If the ends of P are the ends of

another marker m; of K|, K, is a polygon, and m; is an edge of a bond G, set
KIJ K24_' G‘

The application of the final rule (R5) is needed for the proof of Lemma 5.4.

In the above list of rules, (R1) is justified by Lemma 4.3. In particular, (4.3a) implies N(H)
has an end-node z of P mnot incident to pm(Q), and (4.3b) implies z € N(Q). (R2) is justified
similarly. For (R3), first note that K, has already been selected because (R1) must have been
applied to Hy or one of its descendants. Now by Lemma 4.3, P has an end z € N(Q) not incident
to pm(@), which implies that K, could not previously have been assigned. However, z may be
incident to a child marker of @, in which case K354 Q is possible. Consider now (R4). Clearly
N(H) contains both ends of P. If neither K, nor K, has been assigned, then T(H;)=1 (all 7).
Hence, Lemma 4.3 implies both ends of P are in N(Q), as required. Similar reasoning justifies

the choice of Ky when K has already been assigned.

(5.1) Lemma. The application of (R1) during the execution of HYPOPATH and TYPING finds
K,,K;€D such that u; € N(K;) (1=1,2) where u,,u, are the distinct end-nodes of P in m(D).

Where R is the unique path in D between K, and K, no internal node of R contains %y OF Ug.

Proof. By the remarks preceeding the lemma we need only prove the last statement. There is
nothing to prove if K;=K,. If (R3) or (R4) was applied we use the fact that u; is not incident
to pm(K,), and so is contained only in descendants of K;. The only remaining possibility is that

(R1) has been applied twice. But by (4.3a), in this case neither K; is a descendant of the other,

and u; (f=1,2) is contained only in descendants of K;. This completes the proof.

Given that K, K, have been selected, we can carry out the actual update. Recall that ¢-

decompositions have an underlying arborescence structure, and are oriented. In what follows,
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when new members are added to D to form D* we will not explicitly specifiy the new root, how
new arcs of the arborescence are directed, or how the orientations of new members are deter-
mined. The specification of the new root is straightforward: It will always be the unique node
that contains the parent marker of the old root. Given a root, the directions of the arcs of D* are
uniquely specified. Now, for the orientation of D*, the case K=K, is easy, and when K;5£ K,
with one exception, we employ the natural orientation; thus, in procedure SQUEEZE we choose
the orientation such that the merged graph is the one we started with. The one exception occurs
in Step U0 where the orientation of “{f}| J(C-P)” is arbitrary, and in any case can only be

determined once “f” has been added to another member of D",

We introduce the following procedure for application in Step U2 of UPDATE. Note that

D* and R are defined in UPDATE.

Procedure SQUEEZE(L)

L must be a path in some polygon $ of R. If L has fewer than two edges, do nothing.
Otherwise, let f° be a new element and replace S in D* by the two polygons formed by

adding f’ to the paths L and S-L, respectively. Replace S in R by the polygon formed
from S-L.

Algorithm UPDATE

Input: A t-decomposition D, a path P of m(D), and a set C such that C( ) E(m(D))= P and
C-P3£¢; nodes K|,K, of D and nodes uy, ug of K, Ky, respectively, such that the conclusions
of Lemma 5.1 hold. We also assume that (R5) has been applied.

Output: A t-decomposition D* of the graph obtained from m(D) by adding the edges of C—P so
that C is a cycle, and C-P is incident to m(D) at exactly two nodes.

Step UD. Set D*«—D. If |C-P|=1 set {f}« C—-P; otherwise, let f be a new element,
form a polygon with edge-set {f}|J(C-P) (the order of the edges is irrelevant) and add
this polygon to D*. If K;= K, go to Step Ul; otherwise, go to Step U2.

Step Ul. (Case K= K,) Apply the appropriate one of (U1.1)-(U1.3) and stop:
(U1.1) If K, is not a polygon, join u; and ug by f in K.

(U1.2) Suppose K, is a polygon and uy, u, are joined in K; by edge f°. Let f°° be a new
element. Replace f” by f*” in K, and add a bond with edge-set {f,f",f""} to D".

(U1.3) Suppose K, is a polygon and u,, u; are not adjacent. Then there are two distinct
paths in K, say L; and L,, joining u, and u,. Let f;, f5 be new elements. Delete
K, from D*, add polygons formed by joining the ends of L; with f;(i=1,2), and
add a bond with edge-set {f, f1, fo}-
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Step U2. (Case K,5£ K,) Let R be the unique path K;=J,,..., J,,;=K, in D’ joining
K, and K. Let {m;}=E(J;)( E(J;;+1) (1 <5 <s). Apply (U2.1)-(U2.4) and stop:

(U2.1) Suppose 1 < j <s, J; is prime and {m;_;,m;} is a cycle of J;, or J; is a bond on
at least 4 edges and p(J;) is not in R. Let f” be a new element. Let J; be J;
with {m;_;, m;} deleted and f’ added (with the same ends), and let B be a bond
with edge-set {m;_;,f”,m;}. Replace J; in R by B; delete J; from D and
replace it by J;” and B. (Note: There can be at most one J; as above.)

(U2.2) If K, is a polygon, let L, L, be the two paths joining m; and wu;. Apply
SQUEEZE(L;) ({ =1,2). Do the same for K,, if K, is a polygon.

(U2.3) For each internal J; in R that is a polygon, let L;, L be the two components of
J;—{m;, m;;,} and apply SQUEEZE(L;) (i =1,2).

(U2.4) Let G be m(R) with f joining u, and uy. Delete R from D* and add G.

We must now prove that D* is a t-decomposition and that it is the “right” ¢-
decomposition. The second is the easier of the two assertions, and is treated in the following

lemma.

(5.2) Lemma. After UPDATE has been applied, m(D ) equals the graph obtained from m (D) by

adding the edges C' — P so that C is a cycle and C - P is incident to m(D) at exactly two nodes.

Proof. This proof reduces to a careful reading of the steps of UPDATE. We treat only the case

|C—P| >1. In Step UO denote {f}|J(C-P) by S’. Note that S’ is a member of D*. Let

D" denote the final D* with S” deleted and f deleted from the remaining member of D* that

contains it as an edge.

First, we observe that m(D;*)=m(D). Step U0 and (U1l.1) present no difficulties. In
(U1.2), once f is deleted, merging the remaining 2-bond {f’,f”*} with K, yields D; in (U1.3),
merging the remaining 2-bond {f,,f2} with the L, and L, polygons yields D. Now consider Step
U2. Deleting f in this case just means leaving out a part of (U2.4). But then it is straightfor-

ward to see that none of (U2.1)-(U2.4) change m(D*). This proves m(D,")=m(D).

Now to complete the proof, note that f is added in either (U1.1)-(U1.3) or (U2.4). It is clear
in (U1.1) and (U2.4) that f joins u; and ug in m(D)=m(D;"). Steps (U1.2) and (U1.3) are han-
dled as in the previous paragraph. Now, given that f has been added, it only remains to reinsert

S’. But clearly this has the desired effect of adding C' ~ P as a path meeting m(D) at u, u,.
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The main step in proving that D* is a ¢-decomposition is the following lemma.
(56.3) Lemma. G in (U2.4) is prime.

Proof. Let z and y be distinct nodes of G. We show that there are three node disjoint (except
for z and y) paths joining # and y. Assume that in (U2.4), 2 € N(J;) and y € N(J;) where ¢ < k.
We also assume {z,y}[ | {u;,u2} =¢; the proof when this latter assumption fails is an easy varia-

tion of the following arguments.

By (U2.2) and (U2.3) we may assume neither J; nor J, is a polygon. If {=k, then since J;
is either prime or a bond with at least three edges, it contains three node-disjoint paths from z to
y. Suppose one of these paths L contains m;. Then the merge of J,,,...,J,, since this graph is
2-connected, contains a cycle C containing m;, and (C{JL)-{m;} is a path in G. Applying this

procedure at most twice, we obtain the desired paths in G.

Suppose that ¢ k. Consider J;. If i1 and J; is prime, J;[{m;_;,m;}] has at least three
nodes by (U2.1) and there are three node-disjoint paths from z to three of these nodes, including
the ends of m;, and such that m; and m,_; are not in these paths. Let o, be the end of m;_, used
and let a;y be the other end of m; ;. If i==1, find three node-disjoint paths in J; from z to u, and
the ends of m; (and not containing m,); in this case a5 is undefined and a; =1u,. In the case that
J; is a bond, let a;=2 and a;, be the other node in J;. Perform the symmetric construction for
Ji defining B, and f;. Let L; be a path in the merge of Jy,..., J;_; from u, to a;, avoiding ay. L,
is defined similarly for u,,3;. Finally, let C be a cycle of the merge of J;,;,..., Jp_y (empty if
i+1=F) containing m; and my_;. Then L,|JL,|J{f} U(C-{m;,mi_,}) together with the

paths constructed in J; and J; gives the desired three paths in G.

We are now prepared to prove
(5.4) Lemma. D"’ is a t-decomposition.

Proof. We must verify that D” has the following properties: (a) It is a decomposition, (b) every

member has at least three edges, (c) there are no adjacent polygons or bonds, (d) no non-bond has
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an edge parallel to its parent marker, and (e) every member is a bond, polygon, or prime.

Most of the work in verifying (a)-{e) involves simply a careful reading of UPDATE, as in the

proof of Lemma 5.2. We mention only the highlights.

For (a) note that in Step UO and in the case |C—P| > 1, the conditions for D* to be a
decomposition are violated since the polygon (C—P)|J{f} has no edges in common with any
other member of D*. However, it is easy to verify that f is later added to exactly one other

member of D”*, thus restoring the required property.

In proving (b) note that |C-P| >1 implies |(C-P)J{f}| >3 in Step UO. Also note
that whenever SQUEEZE(L) is applied, no change occurs unless L has at least two edges (S—L
always has at least two edges). Finally, note that since J; in (U2.1) is prime, or a bond on at

least 4 edges, |E(J;)|-1>3.

Part (e) is easy to verify in view of Lemmna 5.3. Consider now (¢). Step UO creates no new
adjacencies, and so no violations to (c). However, a polygon may be created and it must then be
verified that edge f is added to no other polygon. That this is true follows from inspection and
Lemma 5.3. Note also that no violation of (c) is created in (U1.2). Here f cannot be in another

bond of D* by (R5).

Finally, consider (d). (Ul.1) preserves (d) by (R5). Steps (Ul.2), (U1.3), and (U2.1)-(U2.3)
increase the ‘“‘edge multiplicities” only in bonds. In (U2.4), u, and 2, are not adjacent until f is
added, and otherwise edge multiplicities are not increased. Hence, if in (U2.4) the parent marker
of G is parallel to another edge, then it was the parent marker of a bond in R with at least 4

edges. This possibility is ruled out by (U2.1). This completes the proof.

6. THE MAIN ALGORITHM

We begin by stating GRAPH. This is followed by a listing of the data structures that are

needed to implement the algorithm, and a discussion of how these data structures are updated.
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Algorithm GRAPH

Input: An rXc totally nonseparable {0,1}-matrix M. We assume (see the first paragraph of sec-
tion 4) that the first column of M is a singleton. (Such a column can always be added without
affecting the realizability of M.)

Output: The conclusion that M is not realizable, or a realizing graph G for M. We use the nota-
tion introduced in section 3.

Step G1. M, is realized by a bond G, with two edges. Set D;«{G,} where for pm(G,) we
choose the non-tree edge of G;. (Note that D; is a decomposition, but not a -
decomposition because G; has only two edges. All further D;, j=> 2, will be ¢-
decompositions.) If ¢ =1, stop (M is graphic). Otherwise, set j«2.

Step G2. Set P—P; and D« D, ;. Apply HYPOPATH. If P is not a hypopath of m(D),
stop.

Comment. If a maximal graphic subset of columns is desired, not just a determination of
the realizability of M, then instead of terminating when P is not a hypopath, simply discard
column j and continue the algorithm.

Step G3. Set C«— C; and apply UPDATE. (Note that the quantities K, Ko, u;, ug required
for input to UPDATE are calculated in HYPOPATH, and the associated calls to TYPING,
through application of rules (R1)}-(R5).) Set D;«D".

Step G4. If j=c, set G« m(D;) and stop; otherwise set j «—j+1 and go to Step G2.

The validity of GRAPH follows from the results of sections 4 and 5.

DATA STRUCTURES. Each of the columns and rows of matrix M is assumed to have a distinct
name, taken from the integers 1,...,7 + ¢; all marker edges created during the algorithm are also
given distinct names, one for each of the two graphs containing them. Each member of each
decomposition is named, and each node of each member is named. These node names for the

graphs in any fixed decomposition will always be distinct, even though after merging several may

be identified.

(D1) M: The given matrix is assumed stored in column list form. Thus, for each column we can
access in linear time the list of rows with ones in this column. For each row name we keep
an indicator to designate if this row is in a previously processed column.

(D2) Members of D, where D is the current t-decomposition: These are stored and accessed using
the standard disjoint set union data structure with path compression (see Tarjan {15]).
Thus, for given distinct member names z,y we can perform makeset(z) (assuming z is not
yet in any set, create a single element set {z} with name z), find(z) (find the name of the
set containing z) and link(z,y) (form the union of the two sets containing z and y). The
sets are stored as arborescences, the root of which is the name of that set. Computing
find(z) involves tracing a directed path from z to the root of its tree, and then “‘compress-
ing” this path so that all nodes on it point directly to the root. The operation link(z,y) is
performed by first performing find(z) and find(y), and completed by creating an arc
pointing from the root of the shallower of the 'f,wcj2 trees to that of the deeper.
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Nodes of members of D: Disjoint set data structure, as in (D2).

Edge locations: Pointers from edges to the names of the members containing them. Thus,
to find the member containing an edge, we first access the member z pointed to by the
edge, and then perform a (D2) find(z).

Predecessor function p of D: Pointers from member names to member names.

Member designation: For each member name, a indicator designating whether it is a bond,
polygon, or prime.

Polygon sizes: The number of edges in each polygon.

Polygon edge-sets: Doubly-linked lists.

Edge ends: Pointers from each edge to its ends. Note that for a given edge, once the two
ends u,v have been accessed it will still be necessary to perform two (D3) finds in order to

find the current names of these ends. For marker edges, one of the two ends is designated +
and one — . This serves to orient D.

(D10) Parent markers: pm(z) for each member name z.

(D11) Child markers: For each current member z 5% root(D), pm(z) is associated with some child

marker of find(p(z)). We keep a pointer from z to this child marker. In the case when z is
a bond and find(p(z)) is a polygon, we also keep a pointer from the child marker to z.

DATA STRUCTURE APPLICATION AND UPDATE. We discuss here the highlights of how

(D1)-(D11) are applied and updated.

(6.1)

(6.2)

Executing Step H1: P and C'—P are computed in time O(| C'|) using (D1), and the indica-
tors for C- P are updated. Then using (D4) and (D2) we construct a list of members in D
containing edges of P. This requires O(|P|) (D2) finds. Using this list and (D5), the com-

putation of D and simultaneously the depth partition (mg, ..., ,) required as input by TYP-

ING uses O(|D|) additional (D2) finds.
Executing Step T1: If H is a bond, as determined by (D6), this is straightforward. Other-
wise, let X =P () E(H). A list of the elements in X can be conveniently created for each
HeD as D is computed. If H is prime, then using (D9) and (D3) we construct a representa-
tion for H[X] that uses space O(|X ), and do this with O(|X|) (D3) finds.

The most complicated case occurs when H is a polygon and RELINK1 is applied. Start-
ing with the marker m = pm(H), we swap edges in pairs in order to build a path L in H

one end of which is m, and every other of which is in X. At a general step we take the



(6.5)

(6.6)

(6.7)
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non-m end-edge of L and find its neighbor. If this edge is not in X, it is swapped in H with
the next edge of X not already in L. This uses (D3), (D8) and (D9) and updates (D8} and

(D9). It requires time O(]|X|) (D3) finds.

Executing Steps T3 and H3: In addition to the work in (6.2), (D9) is applied to accomplish

the reorientation. See (4.7).

Executing (R1)-(R5): The application of (R5) requires special consideration since the final
assignment statement may require accessing a child of a node. However, this happens only

for polygon-parent, bond-child pairs and (D11) may be used.

Executing Step Ul: Determining if K, is a polygon takes constant time because of (D6).
(U1.1) takes constant time, as does (U1.2). In (Ul.3) particular care must be taken with
(D4). Thus, when two polygons are formed from one, then only one of these can retain the
name of the old polygon member, and hence for every edge in one of the new polygons (D4)
must be updated. In this update we always choose the piece L; that meets the set
W=(PM E(K,))|UF where F is the set of child markers of K, such that P meets the
corresponding complete child. It is easy to see then that L; C W, and hence that O(]P|)

work will accomplish the update.

We must also update (D5) for all children of the polygon L;|J {f;} having the same

name. This can be done in O(|D|) time since L; C W implies all children are in D.

Executing Step U2: First R must be calculated, which uses O(|R|) (D2) finds. (These will
be constant-time finds given that the reduced ¢{-decomposition for P has already been found
in HYPOPATH.) (U2.1) requires four {D3) finds to check adjacency of m; and m; ;. For
(U2.2) and (U2.3), the nontrivial work involves the applications of SQUEEZE. Again, by
the convention introduced in (6.5), the total work for the SQUEEZEs involves O(|P])
constant-time updates in (D4), and O(| R |) constant-time operations on each of (D2), (D3),
(D5)-(D11). Finally, in (U2.4) the forming of m(R) requires O(| R |) (D2) and (D3) links.

We remark that (D7) is not necessary to implement the algorithm. However, its availability

will sometimes speed up the computation of T{H) when H is a polygon.
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7. TIME AND SPACE BOUNDS

We begin by giving bounds for one application of HYPOPATH and one application of

UPDATE. Note that (R1)-(R5) of section 5 are applied in HYPOPATH.

(7.1) Lemma. One application of HYPOPATH uses time bounded by the time required for

O(|P}+ |D|) find operations using (D2) and (D3).

Proof. Step H1 takes O(|P|+ |D]) (D2) finds by (6.1). Now consider Steps T1, T3 and H3.
For Q€D, let H,...,H, be a list of the complete children of @ in D (this list may be empty).
Define Wo=(PNE@Q@)U {m,...,m} where mi=pm(H;) (1 <:<t), and  set
H=Qy[H,,...,H;]. By (6.2) and (6.3), T(H) and an orientation f such that Q,-[H,,..., H;] is good

can be found with O(| Wy |) (D3) finds. But

Y Wl = |P|+|D]|-1.
Qeb

This proves the result.

(7.2) Lemma. One application of UPDATE uses time bounded by O(|C|+ |R]|) finds using

(D2) and (D3) (R is defined in Step U2).

Proof. Step UO can clearly be carried out in time O(|C|). The remainder of the proof follows

from (6.5) and (6.6).

For the final derivation of the time and space bounds we need the results (7.3)-(7.11).

(7.3) Lemma. Let G be a nonseparable graph with + > 3 nodes. Let D be a t-decomposition of

G and let H,,..., H; be the prime members of D. Then

S IN(H)| < 204,

§=1

Proof. The result follows easily by induction on r.
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The algorithm GRAPH proceeds by producing a sequence of t-decompositions. Let
D;,...,D, be the sequence produced for a given r X ¢ {0,1}-matrix. For each index j (1< <¢)
such that Step U2 is applied, denote by R; the path R of nodes merged in (U2.4). Every prime
node H that occurs in the algorithm originates from the application of (U2.4) to some R;; H may
then be further modified by application of (U1.1) or (U2.1), and so several Hs may have the same

associated j, but the value of j for a given H is still well defined. Now define, recursively, the

sets Iy by IH:{J'}U{ U IJ}'

JERJ», J prime

(7.4) Lemma. For each prime H that occurs as a node of some decomposition in GRAPH,

IN(H)| = 3+ (1R | -[|R:]/2]).

i€ly

([2] is the least integer not less than z.)

Proof. Let p;=|R;| (i€1ly). The proof is by induction in |Iy|. If Iy ={s}, then

IN(H)| = 2(1-p;) + 3, | N(J)
JER,

If Jis a bond, then |N(J)| =2, and if J is not a bond then | N(J)| > 3. Since no two bonds can
share a marker edge, and neither end-graph of R; can be a bond, by Lemma 5.1, the number of

bonds in R; is bounded by [p;/2] -1. Therefore

IN(H)| = 2(1-p;) + 3p; — [p:/2] + 1= 3 + p; - [p:/2] .
Now let |Iy| > 1. Define m —max{s:¢€ly} and Iy’ =Iy~{m}. For each prime node JER,,,
induction yields
IN(DI = 3+ X (pi—Tpi/2]).
iel,
Let R, ={J€R,,: J prime} and R, =R,,~R,,”. Then
INE)| 2 21-pa) + 5 {34 5 (e[n/2)] + 3 [N
JER,, i€l, JER,"”

Since {I;: JER,,"} partitions I, it follows that
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IN(H)| = 2(1-py) + 3| R, | +

+ 25 (mi-Tp:/21) + 3(pm— | B |) = ([P /2] -1)

i€ly

=3+, p-Y, [p/2]

i€ly  i€ly

(7.5) Theorem. For r >3,

Y |R;| < 6r-12.
al R

Proof. Let P be the set of prime members of D,. By Lemmas 7.3 and 7 4,

6r-12 > 32{3+ E(IR.-I—HR.-l/zn}

HEP i€ly

> z{9+z|R.-|} > Y IR

Hep ily dl R,

Theorem 7.5 says that the total number of graphs ever involved in a (U2.4) merge is O(r).
For each t-decomposition D;, let 15,- be the corresponding reduced t-decomposition. Then

R;CD;.

Next we bound the number of nodes in ﬁ;, but not in R;.

(7.6) Lemma. Let H be a nonseparable graph and let X be a cycle of H. Let D be a (-
decomposition of H and let D be the reduced t-decomposition with respect to X. Then

D] <X +1.

Proof. The theorem is clear if |D|=1. If D has depth one, then all but at most one node of D
contains edges of X. Again the result is clear. Hence, we may assume that there is a pendant

node K of D where K is at least distance two from root(D).

Let K be the parent of K, and let X' =(X-E(K))|J {pm(K)}. Clearly X’ is a cycle of
m(D"), where D’ is D with K deleted. If K’ has more than one child, D’ is a reduced t-

decomposition for X”. In this case, the theorem follows by induction on |D |. Suppose K’ has
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only K as a child and that X (E(K’)=2¢ (otherwise, again we may apply induction). But then
pm(K) is parallel to pm(K”) in K~ and so K~ is a bond.

Now by the choice of K, K is not root(D); moreover, p(K”) is not a bond. Hence D”",D
with K and K~ deleted, is a reduced t¢-decomposition for X’. In addition, note that
| XM E(K)| >2; otherwise K has and edge parallel to its parent marker, and is not a bond.
Since at least two edges of X have been deleted, and exactly two nodes of 15, the result follows by

induction.

(7.7) Theorem. Let ﬁl,...,Dc be the sequence of reduced ¢-decompositions produced by GRAPH.

Then

[4
YD £ 2n+c+6r-12.

i=1
Proof. Consider a particular D;. Let R;={K,} if K,=K, in UPDATE. Now D; can be
viewed as a collection of trees attached to E;. For a particular one of these trees T, let m” be
the marker linking 7" to R;. Then clearly X=(P; [ VE(m(T ))\J{m'} is a cycle in m(T"),
and, indeed, T is a reduced ¢-decomposition for X. Hence, by Lemma 7.6,

| T

< |X]+1<2|X|. Summing over all such 7’, we have that the to#al number of nodes of

A

D; not in R; is bounded by 2 | P;,|. Hence,

N 4
D,'| __<_ E(IR,!+2IP'+1|)S ¢c+6r-12+2n
=1

by Theorem 7.5.

(7.8) Lemma. > |C;-P;| < 2r.
lc,-P;| >2

(7.9) Lemma. For a single application of GRAPH, the total number of node names created for
nodes of members of t-decompositions and the total number of member names created are both

bounded by O(r).

Proof. For a t-decomposition D, define S(D)=)>Y(|C|-3:C is the edge-set of a polygon of D).
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Note that in order for (U1.3) or SQUEEZE to be applied it must be that S(D)>0. Moreover, the
application of either of these operations reduces S(D). On the other hand, S(D) can only be
increased in Step U0, and then only by | C—P| -2, whenever | C—P| > 2. Hence, it follows from

Lemma 7.8 that (U1.3) and the SQUEEZE procedure can be applied at most O(r) times.

Now define S*(D)=> (| C|-k(C): Cis the edge-set of a polygon of D) where k(C) is the
number of markers in C that are also in some bond. Note that in order for (U1.2) to be applied it
must be that $"(D)>0. §°(D) can only be increased by application of Step U0 or the SQUEEZE
procedure. The total increase over all applications of Step U0 is O(r) by Lemma 7.8. On the
other hand, each application of SQUEEZE increases S”(D) by only a small constant. In view of
the calculations of the previous paragraph, the total increase over one application of GRAPH is
therefore bounded by O(r). But each application of (Ul.2) decreases S’(D). It follows that

(U1.2) can be applied at most O(r) times.

By the calculations of the previous two paragraphs we may ignore (U1.2), (U1.3), (U2.2) and
(U2.3) in counting the number of nodes and the number of members created. The number of
applications of (U2.1) is bounded by O(r) because of Theorem 7.5. (U2.4) adds no node or
member names (the new member m(R) inherits its name, through (D2) links, from one of the
members in R). (Ul.1) also adds no node or member names. Finally, the number of node and

member names created in Step U0 is bounded by O(r) by Lemma 7.8.

(7.10) Lemma. The total number of edge names created by an application of GRAPH is

bounded by O(r + ¢).

Proof. A direct examination of UPDATE shows that no more than |C-P|+6 edges can be

added by any one application.

We now introduce a result of Tarjan [15]. Define the so-called Ackerman function A(f,5) on
pairs of positive integers ,5 by: A(L,5)=2/, A(i,1)=A(:-1,2) for i>2 and

A(d,))=A(i-1,A(s,7-1)) for 1,7 >2. For integers m>n2>1, define
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a(m,n)=min{i >1: A(¢,[m/n]) >logsn}. The function a(m,n) is very slow growing, being for
all practical purposes never bigger than 4. (A(4,1)= f(17), where f(1)=2 and f(k)=2/*1 for

k >2. Thus, f(4)=2%%%)

(7.11) Theorem. (Tarjan [14]) The disjoint set union algorithm with path compression runs in
time O(ma(m,n)) where m is the total number of operations (makesets, links and finds) and n is

the number of elements in the underlying set.

(7.12) Theorem. Given an rXe¢ {0,1}-matrix with n nonzero entries, GRAPH runs in time

O(na(n,r)) and uses space O(n).

Proof. The time bound for Steps G1-G3 follows from (7.1), (7.2), (7.7), (7.9) and (7.11). For
Step G4 note that G can be computed directly using (D9) and O(¢) (D3) finds. The space bound
follows from (7.9), (7.10) and an examination of (D1)-(D11). The determining factor is the storage
for the input matrix. We note that some temporary storage is involved in the implementation of
several of the steps, principally Steps T1, T3, and H3 (see (6.2)). This storage is not recorded in

(D1)-(D11). However, it can easily be verified never to exceed O(|P |+ |D|).

It is open whether there is an O(n) algorithm for graph realization. Recently Gabow and
Tarjan [8] have given some conditions under which disjoint sets can be treated in linear time, and
although such a reduction in the time required for the applicable parts of GRAPH would imply a
linear time bound, our problem does not seem to meet their conditions. Indeed, we conjecture

that there is no linear-time (i.e., O(n)) algorithm for graph realization.

i
|

2'
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APPENDIX. AN EXAMPLE

Consider the 9X8 matrix M in Figure 3:

10 11 12 13 14 15 16 17

© 00 ~3 O Ut WD
OO0 00000 0O
— = OO0 O O
O k= O e = O
O O = O O
S = e = O e = = O
C OO MO OOO
O OO O = =000
O O O O e b e e e

Figure 3: Input Matrix M

M is totally nonseparable since each column, except the first, has a 1 in a row with a 1 in a
previous column. We use the labels B}, By, ... for the graphs that occur in t-decompositions dur-

ing the execution of the algorithm.

Column 10: In Step G1 and obtain Gy=B; with D;={B,;} and pm(B,)=10.

Figure 4: D, (column 10)

Column 11: In Step G2 we have P={1}. Note that D =D, is not a t-decomposition since B,

has only two edges, but is a t-decomposition in all other respects.

Step H1 is trivial since D has only one member. In Step H3, t=0, so H=Q =B,. B, is
by convention not a polygon, since it has two edges, and so RELINK2(B,) is not applied. Note
that |P| =1, and so P is automatically a path. Note also that (R4) and (R5) are applied in Step
H3. Since TYPING was not used in this case, (R1)}-(R3) were not applied. Thus, K;=K,=DB,.
No change occurs in (R5) since B, is a bond, even though K;= K, and the ends of P are the ends

of pm(B,)=10.
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In Step G3 we have C'={1,7,8,9,11}. The identities of u;,u, as required by the input for
UPDATE are clear since B, has only two nodes. In Step U0 we have C—P={7,89,11}. Let
f=18. Adding a polygon B, with edges {7,8,9,11,18} to D*={B,} we obtain the non-
decomposition D* as in Figure 5 (“non” because there is no marker edge shared by B; and B,).

10

B Q

18

B, 11@7

Figure 5: D* for column 11

In Step Ul we apply (Ul.1) since, by convention, B, is not a polygon. This yields the t-
decomposition D, in Figure 6. Note that the marker edge 18 has been oriented. The orientation
is arbitrary, as suggested by the discussion following the proof of Lemma 5.1. Note also that edge
18 is given the same name in both B; and B,. This causes no difficulty here, in contrast to the
situation in a computer implementation, as the distinct identities of these two edges is clear from

the picture.
10

/1‘

By (\ :)
o

1 ul

=~

u2

Figure 6: D, (column 11)

Column 12: We now have P={7,8}. In Step H1 the reduced decomposition is I§={B2} since
this member of D contains all the edges of P. In Step H3, t=0, so H=@Q =B,. Since By is a
polygon we apply RELINK2(B;). Now Wg =P = {7,8} (see definition of Wy preceding Lemma
4.3), and Z=¢ since ¢t =0 (see definition of Z preceding RELINK1). But Wo-Z={7,8} is
already a path in B,, and so nothing happens. Also no reorientation occurs in Step H3 because
t =0, or, more generally, because Z=¢. Because of (R4), K;—=Ky=B,. No change occurs in

(R5) since %, and u, are not adjacent (see Figure 6).
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In Step G3 we have C'=1{2,3,4,6,7,8,12}, and in Step U0 C—P ={2,3,4,6,12}. Let f=19.
Adding a polygon B, with edges {2,3,4,6,12,19} to D’ we obtain the non-decomposition D* as in

Figure 7.

Figure 7: D" for column 12

In Step Ul we apply (U1.3). Letting f,==20 and f,= 21, and where the path L; has edges

{9,11,18} and L, has edges {7,8}, we obtain the {-decomposition D3 in Figure 8.

10
B oL
B
B,
8
N 7

>
B on Bo—»

9 ¥

N
-2
-
-

N

-

* :

U‘US

Figure 8: D (column 12)

Column 13: We now have P={2,3,4,6,7}. In Step Hl the reduced decomposition is
ﬁ={Bg,B4,B5}, as given in Figure 9, where the inclusion of B, is forced by connection. This

leads to our first application of TYPING.

2 i;f\\z 2 7
S g PR AU S
X \\l,'
x'
By
Figure 9: D for column 13
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The depth partition is given by mg={B,} and m={Bj,Bs}, so that s =1. In Step T1 we
must apply both RELINK1(Bj3) and RELINK1(B;) since Bg,Bg are both polygons. However, in
both cases Z = ¢; moreover, Wp = {2,3,4,6} and Wp, = {7} are both paths incident to the parent
markers, 19 and 21, respectively. Hence, no relinking actually occurs, and we have

T(Bs)=T(Bs)=3.

We must now apply Step H3. We have @ =B,, Hy= B3 and Hy=By. The current orien-
tation is given by the directions on the marker edges 19 and 21. Since @ is not a polygon we do
not apply RELINK2. It remains only to determine a new orientation f. As suggested in (4.7), to
do this all we need to know about H; and H, is that both are type 3, in addition to knowing
which parent marker end-nodes meet WH1 and WH2, respectively. These are the nodes = and y in
Figure 9. Since their corresponding nodes on @ under f, 2° and y”, are not equal, one of 19,21

must be reoriented. We reorient 19, which yields the reduced decomposition D given in Figure

SO i

Figure 10: Reoriented D for column 13

10.

In Step G3 we have C'={2,3,4,6,7,13}. For the input requirements of UPDATE we note
that K,,Ko,u,,us are chosen in Step T1 by the application of rule (R1). Thus, we have K; =B,
and Ky=DBs (Ky=B3, K;=2DBs is an equally valid choice), where u;,u, are specified in Figure
10. In Step U0 we have D" as in Figure 8, except that edge 19 has been reoriented in B,. Since

C - P = {13} we obtain f =13. Nothing is added to D" in this step.

Now we come to Step U2. For the path R we have J,=DB;, Jo=DB,, J3=DB; s=2,
m,;=19, and my;=21. Note that B, is a bond, and that p(B,)= B, is not in R. However, B, has
only three edges. Thus, no change occurs in (U2.1). In (U.2) we apply SQUEEZE(L) for
L =1{2,3,4,6}; all other Ls encountered have only one edge so that SQUEEZE has no effect in

these cases. The resulting D" is given in Figure 11.
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2 B3 By
6 ! N 7
Bg j22 =22 1\ 19 - 19 ‘\ é "21->21‘ Bs
% 12 ' 4

Figure 11: R for column 13

Nothing occurs in (U2.3) since R has no internal polygons. Finally, applying (U2.4) we

obtain the t-decomposition D, of Figure 12, where Bj is the graph G produced by the merge.

Figure 12: D, (column 13)

Column 14: We have P={2,3,4,6,7,8}, D —{B3,Bg} my={Bs}, and m={Bg}. In Step TI,
RELINK(Bg) has no effect, and T(Bg)=1. This brings us to Step H3 with ¢ = B;, H,= B¢ and
t=1. Since T(H;)=1 no reorientation occurs. K;==K,— By because of rule (R4) applied in

Step H3, with u,,u, as indicated in Figure 12. In Step U0, f=14. Finally, (Ul.1) is applied

yielding Dg as in Figure 13.

N
w
I
-}

Figure 13: Dy (column 14)

Column 15: We have P={6} and D —={Bs}. In Step H3, RELINK2(Bg) switches the positions of
4 and 6, where Wo—{6}, Z=¢, so that 6 is adjacent to pm(Bs)=22. Because ¢=0, no

reorientation occurs, K,;=K,= Bg, by (R4), and u,uy are the ends of 6 in Bg. In Step UO we
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take f =23 (a new element) and introduce a polygon By on edge-set {f}|J(C-P)={5,15,23}.
Next (U1.2) is applied, with f* =6. Let f”" =24. Replacing edge 6 by edge 24 in Bg, and adding

a bond Bg on edges {6,23,24} we obtain Dg as in Figure 14.

Bg

Figure 14: Dg (column 15)

Column 16: We have P ={4,5}, D = {Bg,B7,Bs}, my={Bs}, 7 ={DBs}, and my={B;}. Applying
Step T1 to B; we see that RELINK1(B;) has no effect, and determine that T(B;)=3, K;,=By
(by rule (R1)), and that u, is the node of B; not incident to edge 23. Next we apply Step T3 with
@ =Bg and H,=DB; (t=1). No reorientation occurs, and we deduce that T(Q[H;])=3. This
completes the application of TYPING, and brings us to Step H3. In applying RELINK2(Bys), we
note that Wo—={4,24} and Z= {24}, and 4 is switched with 3 to make it adjacent to 24. The

application of rule (R4) yields Ky=Bg and u, equal to the end-node of 4 not shared by 24.

Now in Step U0 we have C'={4,5,16} and f=16. (U2.1) has no effect. (U2.2) results in
squeezing the path {2,3,22} from Bg. (U2.3) has no effect because R has no internal polygons.

Finally, applying (U2.4) we obtain D7 as in Figure 15.

3

v 1 ! I
5 1 By 2 A5+ 35 h
1 N —--d 915 B8
8 22 I

~_ 22
~

Figure 15: D; (column 16)
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Column 172 We have P={1,2,34,5}, D=D,; and blocks in the depth partition
To={B1},..., 4= {Bg}. In TYPING we obtain T(H)=3 for each application of Steps T1 and
T3. RELINKI1 is applied twice, once to Bg and once to By, but in neither case results in any
change. The first application of Step T1 results in identifying K, as Bg and u, as the node of Bg
common to edges 5 and 15. K, is chosen to B, in Step H3 since u; is common to edges 11 and
18. No reorientations occur in TYPING or HYPOPATH. Finally, in UPDATE Step U2 is
applied. (U2.2) results in squeezing the path {11,9} from B,, and in (U2.3) the path {2,3} is
squeezed. The application of (U2.4) results in Dg as in Figure 16. m(Dg), a graph realizing the

original M, is given in Figure 17.

6 12 8 9
' - 26} B,
5 7 11

By *26
1 ! ~
/
4 16 < 18 N
< 18\Y |10 B
\‘ [Ny 94
_____ 2‘7—————
27

Figure 18: Dg (column 17)

13
14
6 12 8
15
5 9
17 7
11
4 16
1 10
3 2

Figure 17: A realization for M
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